\(\int \frac {A+C \cos ^2(c+d x)}{\sqrt {a+a \cos (c+d x)} \sqrt {\sec (c+d x)}} \, dx\) [1237]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F(-1)]
   Mupad [F(-1)]

Optimal result

Integrand size = 37, antiderivative size = 223 \[ \int \frac {A+C \cos ^2(c+d x)}{\sqrt {a+a \cos (c+d x)} \sqrt {\sec (c+d x)}} \, dx=\frac {(8 A+7 C) \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{4 \sqrt {a} d}-\frac {\sqrt {2} (A+C) \arctan \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{\sqrt {a} d}+\frac {C \sin (c+d x)}{2 d \sqrt {a+a \cos (c+d x)} \sec ^{\frac {3}{2}}(c+d x)}-\frac {C \sin (c+d x)}{4 d \sqrt {a+a \cos (c+d x)} \sqrt {\sec (c+d x)}} \]

[Out]

1/2*C*sin(d*x+c)/d/sec(d*x+c)^(3/2)/(a+a*cos(d*x+c))^(1/2)-1/4*C*sin(d*x+c)/d/(a+a*cos(d*x+c))^(1/2)/sec(d*x+c
)^(1/2)+1/4*(8*A+7*C)*arcsin(sin(d*x+c)*a^(1/2)/(a+a*cos(d*x+c))^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d/a^
(1/2)-(A+C)*arctan(1/2*sin(d*x+c)*a^(1/2)*2^(1/2)/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(1/2))*2^(1/2)*cos(d*x+c)^
(1/2)*sec(d*x+c)^(1/2)/d/a^(1/2)

Rubi [A] (verified)

Time = 0.80 (sec) , antiderivative size = 223, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.216, Rules used = {4306, 3125, 3062, 3061, 2861, 211, 2853, 222} \[ \int \frac {A+C \cos ^2(c+d x)}{\sqrt {a+a \cos (c+d x)} \sqrt {\sec (c+d x)}} \, dx=\frac {(8 A+7 C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{4 \sqrt {a} d}-\frac {\sqrt {2} (A+C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \arctan \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}\right )}{\sqrt {a} d}+\frac {C \sin (c+d x)}{2 d \sec ^{\frac {3}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}-\frac {C \sin (c+d x)}{4 d \sqrt {\sec (c+d x)} \sqrt {a \cos (c+d x)+a}} \]

[In]

Int[(A + C*Cos[c + d*x]^2)/(Sqrt[a + a*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]),x]

[Out]

((8*A + 7*C)*ArcSin[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]]*Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]])/(4
*Sqrt[a]*d) - (Sqrt[2]*(A + C)*ArcTan[(Sqrt[a]*Sin[c + d*x])/(Sqrt[2]*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*
x]])]*Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]])/(Sqrt[a]*d) + (C*Sin[c + d*x])/(2*d*Sqrt[a + a*Cos[c + d*x]]*Sec[
c + d*x]^(3/2)) - (C*Sin[c + d*x])/(4*d*Sqrt[a + a*Cos[c + d*x]]*Sqrt[Sec[c + d*x]])

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 222

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[Rt[-b, 2]*(x/Sqrt[a])]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rule 2853

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[-2/f, Su
bst[Int[1/Sqrt[1 - x^2/a], x], x, b*(Cos[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, d, e, f}, x]
&& EqQ[a^2 - b^2, 0] && EqQ[d, a/b]

Rule 2861

Int[1/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> D
ist[-2*(a/f), Subst[Int[1/(2*b^2 - (a*c - b*d)*x^2), x], x, b*(Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c +
 d*Sin[e + f*x]]))], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 -
 d^2, 0]

Rule 3061

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin
[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist[(A*b - a*B)/b, Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*
x]]), x], x] + Dist[B/b, Int[Sqrt[a + b*Sin[e + f*x]]/Sqrt[c + d*Sin[e + f*x]], x], x] /; FreeQ[{a, b, c, d, e
, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 3062

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^n/(f*
(m + n + 1))), x] + Dist[1/(b*(m + n + 1)), Int[(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n - 1)*Simp[A*b*c
*(m + n + 1) + B*(a*c*m + b*d*n) + (A*b*d*(m + n + 1) + B*(a*d*m + b*c*n))*Sin[e + f*x], x], x], x] /; FreeQ[{
a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[n, 0] &&
(IntegerQ[n] || EqQ[m + 1/2, 0])

Rule 3125

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (C_.)*
sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(
n + 1)/(d*f*(m + n + 2))), x] + Dist[1/(b*d*(m + n + 2)), Int[(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^n*Si
mp[A*b*d*(m + n + 2) + C*(a*c*m + b*d*(n + 1)) + C*(a*d*m - b*c*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a,
 b, c, d, e, f, A, C, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ[m, -2^
(-1)] && NeQ[m + n + 2, 0]

Rule 4306

Int[(u_)*((c_.)*sec[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Dist[(c*Sec[a + b*x])^m*(c*Cos[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Cos[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSineIntegrandQ[u,
 x]

Rubi steps \begin{align*} \text {integral}& = \left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {\cos (c+d x)} \left (A+C \cos ^2(c+d x)\right )}{\sqrt {a+a \cos (c+d x)}} \, dx \\ & = \frac {C \sin (c+d x)}{2 d \sqrt {a+a \cos (c+d x)} \sec ^{\frac {3}{2}}(c+d x)}+\frac {\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {\cos (c+d x)} \left (\frac {1}{2} a (4 A+3 C)-\frac {1}{2} a C \cos (c+d x)\right )}{\sqrt {a+a \cos (c+d x)}} \, dx}{2 a} \\ & = \frac {C \sin (c+d x)}{2 d \sqrt {a+a \cos (c+d x)} \sec ^{\frac {3}{2}}(c+d x)}-\frac {C \sin (c+d x)}{4 d \sqrt {a+a \cos (c+d x)} \sqrt {\sec (c+d x)}}+\frac {\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {-\frac {a^2 C}{4}+\frac {1}{4} a^2 (8 A+7 C) \cos (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}} \, dx}{2 a^2} \\ & = \frac {C \sin (c+d x)}{2 d \sqrt {a+a \cos (c+d x)} \sec ^{\frac {3}{2}}(c+d x)}-\frac {C \sin (c+d x)}{4 d \sqrt {a+a \cos (c+d x)} \sqrt {\sec (c+d x)}}-\left ((A+C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}} \, dx+\frac {\left ((8 A+7 C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {a+a \cos (c+d x)}}{\sqrt {\cos (c+d x)}} \, dx}{8 a} \\ & = \frac {C \sin (c+d x)}{2 d \sqrt {a+a \cos (c+d x)} \sec ^{\frac {3}{2}}(c+d x)}-\frac {C \sin (c+d x)}{4 d \sqrt {a+a \cos (c+d x)} \sqrt {\sec (c+d x)}}+\frac {\left (2 a (A+C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \text {Subst}\left (\int \frac {1}{2 a^2+a x^2} \, dx,x,-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}\right )}{d}-\frac {\left ((8 A+7 C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1-\frac {x^2}{a}}} \, dx,x,-\frac {a \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{4 a d} \\ & = \frac {(8 A+7 C) \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{4 \sqrt {a} d}-\frac {\sqrt {2} (A+C) \arctan \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{\sqrt {a} d}+\frac {C \sin (c+d x)}{2 d \sqrt {a+a \cos (c+d x)} \sec ^{\frac {3}{2}}(c+d x)}-\frac {C \sin (c+d x)}{4 d \sqrt {a+a \cos (c+d x)} \sqrt {\sec (c+d x)}} \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 1.68 (sec) , antiderivative size = 496, normalized size of antiderivative = 2.22 \[ \int \frac {A+C \cos ^2(c+d x)}{\sqrt {a+a \cos (c+d x)} \sqrt {\sec (c+d x)}} \, dx=-\frac {i e^{-3 i (c+d x)} \left (1+e^{i (c+d x)}\right ) \left (-C+2 C e^{i (c+d x)}-3 C e^{2 i (c+d x)}+3 C e^{3 i (c+d x)}-2 C e^{4 i (c+d x)}+C e^{5 i (c+d x)}+(8 A+7 C) e^{2 i (c+d x)} \sqrt {1+e^{2 i (c+d x)}} \text {arcsinh}\left (e^{i (c+d x)}\right )+\sqrt {2} C e^{2 i (c+d x)} \sqrt {1+e^{2 i (c+d x)}} \text {arctanh}\left (\frac {1-e^{i (c+d x)}}{\sqrt {2} \sqrt {1+e^{2 i (c+d x)}}}\right )-8 \sqrt {2} A e^{2 i (c+d x)} \sqrt {1+e^{2 i (c+d x)}} \text {arctanh}\left (\frac {-1+e^{i (c+d x)}}{\sqrt {2} \sqrt {1+e^{2 i (c+d x)}}}\right )-7 \sqrt {2} C e^{2 i (c+d x)} \sqrt {1+e^{2 i (c+d x)}} \text {arctanh}\left (\frac {-1+e^{i (c+d x)}}{\sqrt {2} \sqrt {1+e^{2 i (c+d x)}}}\right )-8 A e^{2 i (c+d x)} \sqrt {1+e^{2 i (c+d x)}} \text {arctanh}\left (\sqrt {1+e^{2 i (c+d x)}}\right )-7 C e^{2 i (c+d x)} \sqrt {1+e^{2 i (c+d x)}} \text {arctanh}\left (\sqrt {1+e^{2 i (c+d x)}}\right )\right ) \sqrt {\sec (c+d x)}}{16 d \sqrt {a (1+\cos (c+d x))}} \]

[In]

Integrate[(A + C*Cos[c + d*x]^2)/(Sqrt[a + a*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]),x]

[Out]

((-1/16*I)*(1 + E^(I*(c + d*x)))*(-C + 2*C*E^(I*(c + d*x)) - 3*C*E^((2*I)*(c + d*x)) + 3*C*E^((3*I)*(c + d*x))
 - 2*C*E^((4*I)*(c + d*x)) + C*E^((5*I)*(c + d*x)) + (8*A + 7*C)*E^((2*I)*(c + d*x))*Sqrt[1 + E^((2*I)*(c + d*
x))]*ArcSinh[E^(I*(c + d*x))] + Sqrt[2]*C*E^((2*I)*(c + d*x))*Sqrt[1 + E^((2*I)*(c + d*x))]*ArcTanh[(1 - E^(I*
(c + d*x)))/(Sqrt[2]*Sqrt[1 + E^((2*I)*(c + d*x))])] - 8*Sqrt[2]*A*E^((2*I)*(c + d*x))*Sqrt[1 + E^((2*I)*(c +
d*x))]*ArcTanh[(-1 + E^(I*(c + d*x)))/(Sqrt[2]*Sqrt[1 + E^((2*I)*(c + d*x))])] - 7*Sqrt[2]*C*E^((2*I)*(c + d*x
))*Sqrt[1 + E^((2*I)*(c + d*x))]*ArcTanh[(-1 + E^(I*(c + d*x)))/(Sqrt[2]*Sqrt[1 + E^((2*I)*(c + d*x))])] - 8*A
*E^((2*I)*(c + d*x))*Sqrt[1 + E^((2*I)*(c + d*x))]*ArcTanh[Sqrt[1 + E^((2*I)*(c + d*x))]] - 7*C*E^((2*I)*(c +
d*x))*Sqrt[1 + E^((2*I)*(c + d*x))]*ArcTanh[Sqrt[1 + E^((2*I)*(c + d*x))]])*Sqrt[Sec[c + d*x]])/(d*E^((3*I)*(c
 + d*x))*Sqrt[a*(1 + Cos[c + d*x])])

Maple [A] (verified)

Time = 2.94 (sec) , antiderivative size = 234, normalized size of antiderivative = 1.05

method result size
default \(\frac {\sqrt {2}\, \left (2 C \sqrt {2}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right ) \cos \left (d x +c \right )-C \sqrt {2}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )+8 A \sqrt {2}\, \arctan \left (\sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \tan \left (d x +c \right )\right )+7 C \sqrt {2}\, \arctan \left (\sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \tan \left (d x +c \right )\right )+8 A \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )+8 C \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )\right ) \sqrt {\left (1+\cos \left (d x +c \right )\right ) a}}{8 d a \left (1+\cos \left (d x +c \right )\right ) \sqrt {\sec \left (d x +c \right )}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}}\) \(234\)
parts \(\frac {A \sqrt {2}\, \sqrt {\left (1+\cos \left (d x +c \right )\right ) a}\, \left (\sqrt {2}\, \arctan \left (\sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \tan \left (d x +c \right )\right )+\arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )\right )}{d a \left (1+\cos \left (d x +c \right )\right ) \sqrt {\sec \left (d x +c \right )}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}}+\frac {C \sqrt {2}\, \left (2 \cos \left (d x +c \right ) \sin \left (d x +c \right ) \sqrt {2}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}-\sqrt {2}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )+7 \sqrt {2}\, \arctan \left (\sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \tan \left (d x +c \right )\right )+8 \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )\right ) \sqrt {\left (1+\cos \left (d x +c \right )\right ) a}}{8 d a \left (1+\cos \left (d x +c \right )\right ) \sqrt {\sec \left (d x +c \right )}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}}\) \(288\)

[In]

int((A+C*cos(d*x+c)^2)/(a+a*cos(d*x+c))^(1/2)/sec(d*x+c)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/8/d*2^(1/2)/a*(2*C*2^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)*cos(d*x+c)-C*2^(1/2)*(cos(d*x+c)/(1+
cos(d*x+c)))^(1/2)*sin(d*x+c)+8*A*2^(1/2)*arctan((cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*tan(d*x+c))+7*C*2^(1/2)*arc
tan((cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*tan(d*x+c))+8*A*arcsin(cot(d*x+c)-csc(d*x+c))+8*C*arcsin(cot(d*x+c)-csc(
d*x+c)))*((1+cos(d*x+c))*a)^(1/2)/(1+cos(d*x+c))/sec(d*x+c)^(1/2)/(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)

Fricas [A] (verification not implemented)

none

Time = 2.24 (sec) , antiderivative size = 186, normalized size of antiderivative = 0.83 \[ \int \frac {A+C \cos ^2(c+d x)}{\sqrt {a+a \cos (c+d x)} \sqrt {\sec (c+d x)}} \, dx=-\frac {{\left ({\left (8 \, A + 7 \, C\right )} \cos \left (d x + c\right ) + 8 \, A + 7 \, C\right )} \sqrt {a} \arctan \left (\frac {\sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )}}{\sqrt {a} \sin \left (d x + c\right )}\right ) - \frac {4 \, \sqrt {2} {\left ({\left (A + C\right )} a \cos \left (d x + c\right ) + {\left (A + C\right )} a\right )} \arctan \left (\frac {\sqrt {2} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )}}{\sqrt {a} \sin \left (d x + c\right )}\right )}{\sqrt {a}} - \frac {{\left (2 \, C \cos \left (d x + c\right )^{2} - C \cos \left (d x + c\right )\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{4 \, {\left (a d \cos \left (d x + c\right ) + a d\right )}} \]

[In]

integrate((A+C*cos(d*x+c)^2)/(a+a*cos(d*x+c))^(1/2)/sec(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

-1/4*(((8*A + 7*C)*cos(d*x + c) + 8*A + 7*C)*sqrt(a)*arctan(sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))/(sqrt(
a)*sin(d*x + c))) - 4*sqrt(2)*((A + C)*a*cos(d*x + c) + (A + C)*a)*arctan(sqrt(2)*sqrt(a*cos(d*x + c) + a)*sqr
t(cos(d*x + c))/(sqrt(a)*sin(d*x + c)))/sqrt(a) - (2*C*cos(d*x + c)^2 - C*cos(d*x + c))*sqrt(a*cos(d*x + c) +
a)*sin(d*x + c)/sqrt(cos(d*x + c)))/(a*d*cos(d*x + c) + a*d)

Sympy [F]

\[ \int \frac {A+C \cos ^2(c+d x)}{\sqrt {a+a \cos (c+d x)} \sqrt {\sec (c+d x)}} \, dx=\int \frac {A + C \cos ^{2}{\left (c + d x \right )}}{\sqrt {a \left (\cos {\left (c + d x \right )} + 1\right )} \sqrt {\sec {\left (c + d x \right )}}}\, dx \]

[In]

integrate((A+C*cos(d*x+c)**2)/(a+a*cos(d*x+c))**(1/2)/sec(d*x+c)**(1/2),x)

[Out]

Integral((A + C*cos(c + d*x)**2)/(sqrt(a*(cos(c + d*x) + 1))*sqrt(sec(c + d*x))), x)

Maxima [F]

\[ \int \frac {A+C \cos ^2(c+d x)}{\sqrt {a+a \cos (c+d x)} \sqrt {\sec (c+d x)}} \, dx=\int { \frac {C \cos \left (d x + c\right )^{2} + A}{\sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\sec \left (d x + c\right )}} \,d x } \]

[In]

integrate((A+C*cos(d*x+c)^2)/(a+a*cos(d*x+c))^(1/2)/sec(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + A)/(sqrt(a*cos(d*x + c) + a)*sqrt(sec(d*x + c))), x)

Giac [F(-1)]

Timed out. \[ \int \frac {A+C \cos ^2(c+d x)}{\sqrt {a+a \cos (c+d x)} \sqrt {\sec (c+d x)}} \, dx=\text {Timed out} \]

[In]

integrate((A+C*cos(d*x+c)^2)/(a+a*cos(d*x+c))^(1/2)/sec(d*x+c)^(1/2),x, algorithm="giac")

[Out]

Timed out

Mupad [F(-1)]

Timed out. \[ \int \frac {A+C \cos ^2(c+d x)}{\sqrt {a+a \cos (c+d x)} \sqrt {\sec (c+d x)}} \, dx=\int \frac {C\,{\cos \left (c+d\,x\right )}^2+A}{\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}\,\sqrt {a+a\,\cos \left (c+d\,x\right )}} \,d x \]

[In]

int((A + C*cos(c + d*x)^2)/((1/cos(c + d*x))^(1/2)*(a + a*cos(c + d*x))^(1/2)),x)

[Out]

int((A + C*cos(c + d*x)^2)/((1/cos(c + d*x))^(1/2)*(a + a*cos(c + d*x))^(1/2)), x)